Защита от молнии в частном доме

Защита от молнии в частном доме

Что нужно, чтобы обезопасить дом от молнии?

Достижения современной техники способны сделать жизнь в частном доме по-настоящему комфортной. Сейчас нет необходимости топить печь, чтобы в доме стало теплее, и греть воду, чтобы помыться: в домах устанавливают котлы отопления и бойлеры, холодильник и стиральная машина. Во многих домах есть кондиционеры. И, конечно, почти в каждом частном доме сегодня есть телевизор…
Увы, всей этой техники легко лишиться.

А стоит ли опасаться молний?

Может показаться, что попадание молнии – редчайшая ситуация. Но это не так. Каждый год это явление природы становится причиной не менее чем 500 пожаров. А сколько приборов ежегодно выходит из строя под ее воздействием! Это влечет за собой соответствующие расходы – россияне тратят до 100 миллионов рублей на то, чтобы устранить ущерб, нанесенный таким электрическим разрядом.
А ведь затрат так легко было бы избежать! Достаточно приобрести качественную систему молниезащиты, которая предотвратит случайное попадание молнии в ваш дом и защитит дорогое оборудование от перепадов напряжения.
Компания ДКС – признанный производитель готовых комплексных решений. Для защиты частного дома компания предлагает комплекты для внешней молниезащиты, выпускаемой под брендом «Jupiter». Задача системы «Jupiter» – предотвратить попадание молнии в дом, отвести ее в землю и рассеять. Кроме того, система предотвращает перенапряжение, уравнивая потенциалы между проводящими ток элементами, расположенными на частной территории.

Система внешней молниезащиты

Какова задача внешней молниезащиты? Такие системы защищают от возгорания, которое может возникнуть из-за попадания молнии в объект. Впрочем, для некоторых зданий разряд молнии не опасен – если кровля выполнена из стального (толщина не менее 4 мм), медного (толщина не менее 5 мм, алюминиевого листа (толщина 7 мм), таким зданиям не нужна специальная защита.
Но чаще всего толщина металлической черепицы или профиля – меньше, поэтому большинству зданий дополнительная защита все-таки требуется.

Внешняя молниезащита состоит из следующих элементов:

  • молниеотводы (молниеприемники) – именно они принимают на себя удар молнии;
  • опуски (токоотводы) – по ним ток стекает к заземлителю;
  • заземлители – они обеспечивают рассеивание электрического разряда в земле;
  • соединители – эти элементы применяются для соединения компонентов системы друг с другом;
  • держатели – с их помощью элементы фиксируются на фасаде и кровле.

Чаще всего молниеотводом служит молниеприемная сетка или трос. Материал для изготовления сетки – проволока из устойчивых к коррозии металлов. Например, алюминия, меди, нержавеющей стали, или стали, защищенной методом горячего цинкования.

УЗИП или Внутренняя молниезащита

Внешней защиты недостаточно, чтобы дом был в безопасности. Электрический разряд молнии несет угрозу электрооборудованию. Из-за молнии возникают скачки напряжения, выводящие из строя как бытовые приборы, так и электронику. Предотвратить повреждение оборудования позволяет использование УЗИП – устройств защиты от импульсных перенапряжений. Они относятся к системе внутренней молниезащиты и устанавливаются либо на входе электрических линий в дом — в распределительные щиты, либо в щитки, находящиеся в самом доме.
Как это работает? В случае возникновения перенапряжения сопротивление защитных элементов снижается, и импульсы перенапряжения отводятся на систему заземления. Это позволяет предотвратить перегрузки и выход электроприборов из строя. УЗИПы рассчитаны на многоразовое использование – до 20 срабатываний. Если устройство вдруг выйдет из строя – вы об этом узнаете: сменный модуль поменяет цвет на красный.

Защищаем частный дом от молнии

ДКС предлагает уже готовый комплект, в который входит все необходимое для молниезащиты частного дома – даже держатели и соединительные элементы. Монтаж при желании можно произвести самостоятельно. Для этого потребуется:

1. Установить молниеприемную сетку
Для этого потребуется стальной пруток (минимальный диаметр – 8 мм). Пруток нужно уложить по кровле таким образом, чтобы получились квадраты (сторона 12 м2). Если общая площадь кровли вашего дома меньше 12 м2, то прутки достаточно зафиксировать по краям фасада и вдоль конька кровли.
Важно, чтобы узлы получившейся сетки были соединены электрическим контактом с помощью болтовых соединителей. При необходимости можно прибегнуть и к сварному соединению, но сварка повреждает антикоррозионное покрытие, что негативно влияет на срок службы.
Для крепления сетки на кровле нужно использовать пластиковые или металлические держатели. Для плоских кровель подходит пластиковый вариант, а для скатных – металлический. Шаг установки держателей – не более 1 м.
Выступающие элементы кровли нужно присоединить к молниеприемной сетке. Если выступают неметаллические элементы, нужно будет дополнительно установить молниеприемники. При этом зона защиты молниеприемных мачт – конус, вершина которого совмещена с верхней точкой молниеприемника.

2. Установить токоотводы
Токоотводы – это опуски к заземлителя от молниеприемника. Они изготавливаются из полосы или прутка-катанки и закрепляются на фасаде (для этого применяются держатели – на каждый метр нужно не менее 1 штуки).
Токоотводы нужно расположить так, чтобы расстояние между землей и точкой поражения было минимальным. Ток при этом должен растекаться по нескольким путям. Для этого токоотводы обычно располагаются по периметру здания и углам (не менее 1 штуки на 25 метров).
В целях безопасности токоотводы должны располагаться вдали от дверей, окон и проходных зон. Если фасад подвержен возгоранию, расстояние от токоотвода до него должно составлять не менее 10 см.
Спустите токоотвод в землю и прикрепите к контуру зазмеления с помощью болтовых соединителей. Не забудьте про антикоррозионную ленту – ей надо будет защитить места ввода токоотводов в землю.

3. Организовать заземление
Для этого по периметру здания прокладывается стальная полоса. Она должна располагаться на расстоянии не менее 1 метра от фундамента и не менее 0,5 метра от поверхности земли проложите стальную полосу по периметру здания. Оптимальное сечение полосы — 40х4 мм и более. Вертикальные заземлители позволят еще больше снизить заземление – их требуется от 3 штук на один контур и более.
Чаще всего длина зазмелительных элементов – от 3 до 6 метров, но в некоторых случаях могут потребоваться и более длинные заземлители. При использовании системы молниезащиты ДКС вы можете собрать заземлитель любой длины, наращивая готовые изделия дополнительными стержнями.

Система «Jupiter» для молниезащиты, заземления и уравнивания потенциалов от ДКС – это надежная защита вашего дома. И не только дома! Наши решения могут применяться для защиты любых объектов.

Гроза, молния и средства защиты электросети своими силами

По итогам майских гроз пришлось провести ревизию сгоревшего оборудования и хотя ущерб был не так велик материально, но выход из строя некоторого оборудования нарушил устоявшийся комфорт проживания в собственном доме. Так я решил обратиться к специалистам в своей области, проконсультироваться и расширить систему защиты.

Исходные данные: дом, 3 фазы (15 кВт на дом), заземление штырем в 3 м длиной, автономная электросистема на базе солнечных батарей

На фото результат короткого замыкания со стороны линии 10 КВ. Защита не отработала на районной подстанции. Так выглядит вводной щит со стороны 0.4КВ. Автомат IEK на 100А не смог разорвать дугу между губками. Далее по линии стоял МАП HYBRID 9кВт 48В. Отделались легким испугом: в инверторе поменяли варистор, после чего МАП ожил, правда, перестал нормально работать порт RS232. То есть серьезная авария на подстанции, которая сожгла автоматический предохранитель на 100 Ампер, отразилась на инверторе только сгоревшим варистором и ошибками на контроллере, а весь прочий функционал устройства сохранился, как и вся техника, подключенная после него – достойная похвалы работа.

А ниже на фото узел учета со стороны 10 КВ

Эта авария случилась не в моем доме, но мне эти фотографии передали специалисты компании МикроАРТ. В свое время я решил переключиться на оборудование российского производителя для своей гибридной солнечно-сетевой электросистемы и описывал эти устройства тут и тут.
У меня же был следующий случай: во время грозы молния ударила в мою подстанцию или рядом, в результате чего отработала защита на вводе в дом. Результатом той грозы явилось сгоревшее зарядное устройство аккумуляторов, подключенное к сети в момент грозы, сгоревшее реле автоматики вентиляции (реле питалось от линии, которую поддерживало то самое ЗУ), а инвертор МАП Hybrid 4.5 кВт начал мигать экраном и перестал генерировать. После грозы перезапуск всех систем вернул дом к электроснабжению, инвертор запустился без проблем, а я задумался о серьезной защите домашней электросети.

Немного теории

Во время грозы в обычной квартире или офисном здании должны отработать защиты, установленные стационарной электросетью. В коттеджном поселке, деревне или на дачах защита, как правило, ограничивается вкопанным заземлением на подстанции и предохранителем, отключающим всю сеть от работы. Причем, по правилам подключения, заземление должно быть смонтировано также на каждом втором столбе и отдельно на конечном, где производится подключение абонентского дома. Пройдя по свой деревне и осмотрев более полусотни столбов, я не нашел ни одного заземления, то есть остается полагаться только на себя.

Вторым «убийственным» фактором является наведенное электричество. Во время молнии происходит довольно мощный всплеск ЭМИ, а проводка дома, по сути, является большой антенной. Чем ближе молния, тем больше вероятность скачка напряжения во внутренней сети. С таким явлением постоянно сталкивались и продолжают сталкиваться монтажники домовых локальных сетей, когда свитчи без заземления, во время грозы, сгорают целыми цепочками.

Итак, нам нужно защититься от внешнего импульса, который может прийти с подстанции и от внутреннего скачка, который может случиться при молнии рядом с домом.

Молниеотвод

Если Ваш дом находится на возвышении, далеко от любых строений и является высшей точкой на местности, то лучше озаботиться молниеотводом. Устройство это надежное, но необходимо четко высчитать площадь покрытия. На эту тему есть масса материалов в сети. Скажу только, что действие молниеотвода распространяется конусом от высшей точки к земле. Для «прикрытия» всего дома надо ставить либо два молниеотвода с металлическим тросом между ними, либо один, но довольно высоко. Если заземление молниеотвода выполнено отдельно от общего заземления, то необходимо применить систему уравнивания потенциалов.

Выдержки из ИНСТРУКЦИИ ПО УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ РД 34.21.122-87:
«В качестве заземлителей молниезащиты допускается использовать все рекомендуемые ПУЭ заземлители
электроустановок, за исключением нулевых проводов воздушных линий электропередачи напряжением до 1 кВ. „

“2.5. Для исключения заноса высокого потенциала в защищаемое здание или сооружение но подземным
металлическим коммуникациям (в том числе по электрическим кабелям любого назначения) заземлители защиты от
прямых ударов молнии должны быть по возможности удалены от этих коммуникаций на максимальные расстояния,
допустимые по технологическим требованиям. „

Ввод сети в дом

  • ЛАТР
  • Релейный
  • Симисторный

Первый обладает высокой точностью установки напряжения, поскольку моторчик скользит водилом по обмоткам и задает нужное напряжение. Плюсы: низкая цена, высокая точность выдаваемого напряжения. Минусы: низкая скорость реакции на скачки напряжения, физический износ механики
Второй обладает повышенной скоростью переключения обмоток трансформатора, но так как мощности могут достигать десятка и более кВт, то контакторы реле изнашиваются и рано или поздно могут залипнуть, что приведет к печальным последствиям. Плюсы: доступная цена, достаточная скорость переключения. Минусы: недостаточная надежность ввиду использования механических реле.
Третий тип наиболее интересный, но и наиболее дорогой. Использование мощных ключей позволяет мгновенно реагировать на изменение входного напряжения и переключать обмотки трансформатора. Физического износа, как и залипания контактов попросту нет. Кроме того, переключение происходит при переходе синуса через ноль, поэтому и скачки также исключены. Плюсы: высокая скорость срабатывания, отсутствие физического износа. Минусы: высокая цена.

Для себя я выбрал более дорогой, но и более надежный вариант, стабилизатор с симисторным управлением СН-LCD “Энергия» на 6 кВт. Так как у меня уже стоит инвертор на 4.5 кВт, который в пике может выдавать до 7 кВт, то решено было выбрать стабилизатор с номинальной мощностью 6 кВт и возможностью выдавать в пике до 7.4 кВт.

Об особенностях работы этих стабилизаторов и какие вообще бывают стабилизаторы можно подробно прочитать здесь.
Ну а мне было интересно его разобрать и посмотреть, что там внутри.





Как видно из фото, стабилизатор использует тороидальный трансформатор, который при тех же размерах, что Ш-образный, имеет больший КПД и меньший вес. Сам трансформатор изготовлен в Туле, а стабилизатор разработан и собран в Москве. Таким образом можно смело заявлять о полностью российском производстве, которое сумели организовать и сохранить в компании МикроАРТ.

Итак, я подстраховался от проседания и роста напряжения в диапазоне 125-275 Вольт, но что делать, если будет резкий скачок напряжения, сильно выходящий за эти пределы? Инвертор как-то показал мне по фазе 287 В, после чего ушел в защиту. Но подай на него 380 В и он попросту сгорит, как и стабилизатор. Хотелось защитить дорогое оборудования. Требовался какой-то расцепитель, который при пороговых значениях напряжения отключал бы внешнюю сеть. Лучше уж остаться без сети, чем потом чинить или менять сгоревшее оборудование. Выход был найден — реле контроля сетевого напряжения УЗМ-51M1.

Этот девайс создан для обеспечения работы одной фазы, при этом можно вручную задавать верхний и нижний пороги напряжения, при которых реле будет срабатывать. Время отключения составляет около 20 мс, что является очень неплохим показателем. При этом, небольшие просадки или некоторое превышение напряжения не вызовут моментального отключения, а запустится таймер отключения. При возврате параметров к норме реле самостоятельно подключит нагрузку к сети. Итак, домашние устройства защищены от перепадов и скачков внешней электросети при помощи реле контроля напряжения и стабилизатора. В случае исчезновения сети начинает работать инвертор. А что делать, если внешняя сеть уже отключена, молния бьет рядом и проводка дома работает, как антенна?

Защита внутренней сети

Будем исходить из того, что все розетки имеют правильную разводку, заземление выполнено должным образом и лишний заряд стекает в землю. Но скачок напряжения во внутренней сети легко губит всю технику, поскольку все защиты стоят для обороны от внешних скачков. А вот от внутренних наводок ничего нет. С этой мыслью я обратился к инженерам МикроАРТ, когда забирал стабилизатор и мне порекомендовали «Устройство защиты от молний и наводок» — УЗИП.

Это своеобразный разрядник, который при появлении критического напряжения между фазой и землей пропускает через себя импульс, отправляя его на заземление. То есть во время грозы, когда молния ударит рядом и напряжение в домашней сети поднимется до нескольких киловольт по фазному проводу относительно земли и превысит определенное значение, этот УЗИП просто пустит весь заряд в землю. Поэтому он ставится перед инвертором, одним концом подключаясь к фазе, а другим к заземлению. Стоит учесть, что разряд может быть существенным, поэтому на сечении заземляющего провода экономить не стоит, иначе сопротивление провода может оказаться критичным и не успеть передать импульс в землю.

Так выполнено подключение к внешней сети и генератору:

Я уже упоминал, что у меня есть автономная система на солнечных батареях. По проводам, идущим от солнечных батарей, также может прийти серьезный импульс, выводя из строя солнечный контроллер, а за ним и инвертор. Поэтому на каждый из проводов от солнечных батарей я также повесил УЗИП.

Защита от генератора

На самый аварийный случай, когда внешней сети нет, солнца не видно, а аккумуляторы уже сели, у всех автономщиков есть резервный вариант — бензодизель генератор. Он позволит домашней сети функционировать, самому поработать мощным инструментом, да еще и аккумуляторы подзарядить. Подобную топологию резервирования я описывал в своем материале тут. Проблема такого подключения заключается в том, что большинство генераторов выдают крайне нестабильное и «шумное» питание. Иной раз инверторы или зарядники просто не могут работать с таким питанием. Для подавления помех есть специальный сетевой фильтр. Можно обойтись стандартным «пилотом», но он рассчитан, как правило, на мощность до 2-3 кВт, а от генератора зачастую потребляется больше. Итак, я нашел еще и ЭМИ (электромагнитный импульс) фильтр: Сетевой фильтр подавления ЭМП.

Он выдерживает потребляемую мощность до 11 кВт, чего вполне достаточно для питания целого дома, если имеется мощный генератор. Он имеет сквозное подключение и отдельный контакт для заземления.

Итоги проведенных работ

Результатом одной грозы и малых потерь явилось переосмысление способов защиты, как от внешних энергетических коллизий, так и от внутренних. Кроме того, увеличилась защищенность всех электроприборов в доме, как от перепадов напряжения, так и от резких скачков и импульсов. Дополнительно повысилась автономность за счет подключения генератора через фильтр, что гарантирует стабильный заряд батарей и нормальную работу инвертора.
В итоге, электросистема поменялась. До:

Так стало ПОСЛЕ установки защиты:

Схема подключения генератора довольно проста. Любой из проводов объединяется с имеющейся землей и нулем, заведенным в дом. Второй провод после этого становится фазой. Важно выбрать такой переключатель, который будет исключать одновременное замыкание фазы генератора и фазы с подстанции.

Типы систем, конструкция и установка молниезащиты в частном доме

Молния — электрический искровой заряд, сопровождающийся яркой вспышкой света. Удар молнии способен привести к самым разрушительным последствиям, так как сопровождается выделением большого объема тепловой энергии, что часто ведет к пожарам.

Однако самое опасное последствие молнии не в разрушении имущества, а в опасности для жизни и здоровья человека. От ударов молнией ежегодно гибнут или остаются инвалидами тысячи людей. Правильно установленная молниезащита в частном доме — важнейшая мера, обеспечивающая безопасность жильцов и сохранность имущества.

Схема системы защиты от молний в доме

Типы поражения молнией

Существует две фактора поражения ударом молнии:

  1. Первичный фактор. Непосредственное попадание в здание. Вследствие этого возникает та или иная степень повреждения конструкции дома. В некоторых случаях возможен пожар. Первичный фактор наиболее опасен, так как речь идет о прямом ударе.
  2. Вторичный фактор. Для жильцов не представляет непосредственной угрозы. Негативное воздействие сводится к возникновению электромагнитной индукции в электропроводке здания. Результат воздействия вторичного фактора — мощный перепад напряжения, вследствие которого происходит оплавление микросхем и выход электробытовой техники из строя.

Чтобы обезопаситься от вторичного фактора, достаточно отключить электроприборы во время грозы. Молниезащита дома — единственная возможность защититься от первичного фактора.

Молния хоть и является сильным электрическим разрядом, всегда действует по пути наименьшего сопротивления. Главная задача молниезащиты — перевести отвести удар с защищаемого объекта в другую среду. Защитная система переводит электрический разряд в землю, а здание остается невредимым.

Защита от первичного факторая поражения при ударе молнии

Разновидности молниезащиты

Системы защиты от молнии делят по нескольким критериями. По методу защиты молниеотводы принято разделять на два типа:

  • активные;
  • пассивные.

Активные системы — недавнее изобретение. Их суть в наличии в молниеприемнике ионизатора, издающего импульсы и тем самым притягивающим молнию. Приемник «перетягивает» молнию на себя, в результате чего защищаемые объекты выходят из-под удара. Оборудование для активной защиты стоит дорого и устанавливается исключительно специалистами.

Системы активной молниезащиты GROMOSTAR

Другой тип защиты — пассивный. Такие системы включают молниеприемник, токоотвод и заземлитель. Это самый распространенный тип защитных систем. Задача пассивной защиты — принять на себя удар молнии и отвести разряд в землю.

Еще один критерий — вид защиты. Различают внешнюю и внутреннюю защиту. Внешняя предохраняет здание от непосредственного удара молнии, а внутренняя — защищает электрические сети от возникновения перенапряжения.

Последний критерий — особенности конструкции молниеприемника. Устройства подразделяют на штыревые, тросовые и сетчатые.

Конструкция молниезащиты

В составе системы защиты от молнии три компонента — молниеприемник, токоотвод и заземлитель.

Молниеприемник

Устройство предназначено для приема удара молнии. Его устанавливают на кровле здания с тем расчетом, чтобы молниеприемник был самой высокой точкой. Наиболее простой в конструкционном отношении тип приемника — стержневой: прут из металла диаметром от 10 до 18 миллиметров и длиной от 2,5 метра. В качестве стержневого приемника подойдет и полая металлическая труба, однако ее торцы нужно заварить.

Стержневой молниеприемник на крыше дома

Количество молниеприемников зависит от масштабности строения. Для небольших зданий достаточно одного штыря, хотя рекомендуется предусмотреть два приемника. Для зданий свыше 200 квадратных метров понадобится 2 – 3 или более стержней.

Чтобы предотвратить переход заряда непосредственно на здание, молниеприемник фиксируют на кровле с помощью деревянных брусков или особых фиксаторов. Устройство иногда размещают на отдельной опоре неподалеку от здания. В последнем случае руководствуются нежеланием портить внешний вид крыши. Экзотическое, но вполне эффективное решение — установка приемника на высоком дереве. Главное, чтобы устройство находилось выше самой высокой точки здания.

Менее распространенный тип приемника — тросовая система. Применяется трос, натянутый во всю длину конька кровли и зафиксированный на деревянных опорах. Трос не должен соприкасаться с материалом крыши.

Тросовая система защиты дома от молний

Еще один вид приемников — сетчатый. Производится из металлической проволоки с 6-миллиметровым сечением. Проволоку растягивают по всей кровле и крепят к деревянным опорам на расстоянии 6 – 10 см от крыши.

Читайте также  Как сделать разводку воды в частном доме?

Токоотводы

Предназначение токоотвода — транспортировка электрического заряда от молниеприемника к заземлительному устройству. Токоотводом обычно выступает металлическая проволока диаметром более 6 миллиметров. Подойдет стальная лента толщиной от 2 миллиметров и шириной от 25 – 30 миллиметров.

На стенах из негорючего материала токоотвод фиксируют в произвольном месте. Следует избегать участков возле оконных и дверных проемов. К молниеприемнику токоотвод прикрепляют сваркой, болтами или пайкой.

Количество токоотводов определяется количеством приемников и их типом. Для одного стержневого приемника нужен один отвод. Для каждого тросового или сеточного устройства необходимы два токоотвода.

Монтаж токоотвода молниезащиты

Заземлитель

Устройство изготавливают из двух стальных прутов. Их закапывают в землю на глубину 2 – 3 метра. Между прутами выдерживают по крайней мере расстояние в 3 м. Пруты объединяют перемычкой на глубине 50 – 80 сантиметров в грунте. Токоотвод крепится к перемычке.

Обратите внимание! Если грунтовые воды близко, заземлитель располагают по горизонтали на глубине не менее 80 сантиметров.

Установка молниезащиты

Монтажные работы осуществляют по подготовленному проекту. В процесс создания плана нужно выполнить ряд действий:

  1. Сделать выбор в пользу какой-либо из конструкций приемников (стержневой, тросовый или сетчатый).
  2. Определиться с высотой монтажа стержня.
  3. Найти место для монтажа устройства заземления. Его устанавливают на расстоянии не меньше одного метра от стен здания и не ближе 5 метров от дорожек и входа в дом. Рядом с заземлительным контуром не должны находиться детские площадки, места для отдыха и т. п.
  4. Сделать расчет расстояния от приемника до самой отдаленной точки заземляющего контура.
  5. Выбрать конструкционные материалы для изготовления системы.

Для выполнения установки понадобятся штыковая лопата, сварочный аппарат, пластиковые фиксаторы для токоотвода, молоток и электрическая дрель.

Вначале роют траншею для размещения в ней заземлителя. Траншею делают в виде ровной трехметровой линии или треугольника. Если выбрана линия, электроды устанавливают в грунт на концах траншеи. Электроды объединяют металлическим прутом, а затем скрепляют сваркой. В случае с треугольной формой три электрода устанавливают на вершинах фигуры и объединяют их в металлическую конструкцию при помощи сварочного аппарата.

Устройство контура заземления для системы молниезащиты

Заземление располагают на глубине примерно 80 сантиметров. Предпочтительнее постоянно сырой грунт. Для сухих грунтов понадобится регулярное увлажнение. Чтобы улучшить электропроводность песчаного грунта, его обрабатывают солевым раствором.

Один конец токоотвода объединяют сваркой с молниеприемником, а другой — с заземлителем. Важно соблюсти прилегание токоотвода по всей длине перемычки между стержнями. Приваривать токоотвод нужно в нескольких местах. Участки сварочных работ красят антикоррозийным лакокрасочным материалом.

Токоотвод не должен соприкасаться со стенами здания. Его фиксация осуществляется токонепроводящим крепежом. Расстояние между стеной и токоотводом не должно быть меньше 10 сантиметров.

Установка тросового приемника

Стальной трос натягивают на несколько металлических мачт (их количество составляет от 2 до 4, в зависимости от размера кровли). Мачты устанавливают на деревянных брусках, чтобы избежать соприкосновения с материалом кровли (речь идет о металле). К мачтам прикрепляют концы троса, который должен быть идеально натянут. К одному из окончаний троса приваривают токоотвод. Вместо сварки подойдет болтовое соединение.

Схема установки тросового молниеприемника

При наличии дымохода вокруг него несколько раз оборачивают трос. Концы троса крепят к уже установленному приемнику.

Установка стержневого приемника

Основой стержневой системы станет стальной штырь длиной от 40 до 150 сантиметров или труба. Опорой для приемника могут послужить такие элементы:

  • стоящая на земле высокая мачта;
  • ТВ-антенна;
  • высокое дерево;
  • станина.

Штырь приемника прикрепляют к мачте с помощью сварочного аппарата или болтами, после этого устанавливают токоотвод.

Обратите внимание! После окончания монтажных работ необходимо протестировать сопротивление системы. Показатель должен быть меньше 10 Ом.

Работы по монтажу стержневого молниеприемника

Советы по уходу за молниезащитой

Чтобы система защиты от ударов молнии пребывала в исправном состоянии, за ней нужен уход. Рекомендуется выполнять следующие мероприятия:

  1. Каждый год устраивать проверку всех компонентов системы на работоспособность. Делать это нужно весной — после окончания зимнего сезона.
  2. Проверять материал на ржавление. В случае надобности менять заржавевшие элементы.
  3. Один раз в 2 – 3 года красить детали молниезащиты, прочищать контакты, тестировать соединения на работоспособность.
  4. Каждые 5 лет откапывать заземлитель и проверять его техническое состояние.

Внутренняя защита дома

Пассивная внешняя защита работает круглосуточно, ее не нужно постоянно контролировать на предмет исправности. Однако когда разряд молнии попадает в зону, недоступную для молниеотвода, и возникает электромагнитная индукция, угрозе подвергается вся техника в доме. Для обеспечения высокой безопасности нужна не только внешняя защита, но и внутренняя предохранительная система.

Внутренняя защита предполагает проведение мероприятий, направленных на предотвращение перенапряжения в электрических сетях. Перенапряжение возникает как следствие удара молнии, когда токи направляются по индуктивным и резисторным связям. Результатом перенапряжения станут оплавление микросхем и поломка электробытовой техники на даче или в квартире.

Внутренняя защита от молнии состоит в использовании специального прибора — устройства защиты импульсного перенапряжения (сокращенно УЗИП). Существует несколько классов такого оборудования. Первый класс предназначен для защиты от прямых ударов молнии. Устанавливается на входе в здание во вводно-распределительном устройстве или распредщите. Второй класс устройств помогает справиться с коммутационными помехами. Выпускается оборудование класса 1+2, предназначенное для защиты небольших зданий, в том числе жилых домов.

Чтобы по-настоящему надежно защититься от ударов молнии, рекомендуется использовать комплекс мер: внешняя пассивная система должна сочетаться с активной. Установить систему громоотвода можно как своими руками, так и наняв специалистов. Если установить еще и внутреннюю защиту дома, за бытовую технику во время грозы можно не переживать.

Защита домашней электропроводки от грозовых перенапряжений

Грозовой разряд очень опасен, так как его величина может достигать нескольких сотен тысяч вольт. После каждой грозы выходит из строя техника, повреждаются линии электропередач, а также могут пострадать люди. Куда ударит молния определить нельзя, поэтому ошибочно полагать, что это явление обойдет стороной ваш дом.

Молния может ни разу не попасть в тот или иной участок электросетей и соответственно опасность грозы может недооцениваться. Если молния за несколько лет ни разу не попала в тот или иной участок электросети, то это не значит, что такая возможность исключена.

гроза и молния

Возникновение в бытовой электросети грозового перенапряжения при отсутствии соответствующей защиты приведет к выходу из строя бытовых электроприборов, включенных в тот момент в сеть, а также существует опасность того, что пострадают жители дома. Следовательно, необходимо позаботиться о защите домашней электропроводки от грозовых перенапряжений, чтобы избежать возможных негативных последствий.

Прежде всего, следует отметить, что защиту от перенапряжений должны обеспечивать снабжающие организации путем установки на линиях электропередач соответствующих защитных устройств. Но, как часто бывает на практике, большинство воздушных линий электропередач находятся в неудовлетворительном состоянии и не имеют должной защиты от возможных перенапряжений. В таком случае вопрос защиты домашней электропроводки от возможных перенапряжений – это проблема самих потребителей.

Модульные ограничители перенапряжений

Модульный ограничитель перенапряжения

Для защиты электросетей на распределительных подстанциях, а также непосредственно на воздушных линиях электропередач применяются нелинейные ограничители перенапряжений, так называемые ОПН.

Основной конструктивный элемент данных защитных устройств – варистор, элемент с нелинейными характеристиками. Нелинейность характеристик заключается в изменении сопротивления варистора в зависимости от величины приложенного к нему напряжения.

В нормальном режиме работы электросети, когда напряжение находится в пределах номинальных значений, ограничитель напряжения имеет большое сопротивление и не проводит ток. В случае возникновения импульса перенапряжения, который возникает при попадании молнии в провода электрической сети, сопротивление варистора ОПН резко снижается до минимальных значений и нежелательный импульс уходит в заземляющий контур, к которому подсоединен ограничитель перенапряжения.

Ограничитель импульсных перенапряжений ОПС1

Таким образом, ОПН ограничивает скачки напряжения до безопасного уровня, тем самым защищая оборудование и потребителей от повреждения и других негативных последствий перенапряжений.

Для реализации защиты от перенапряжений в домашней электропроводке существуют компактные модульные ограничители перенапряжений. Такое защитное устройство устанавливается в домашний распределительный щиток и не занимает много места.

Модульный ОНП имеет такой же принцип работы, как и ограничители, применяемые в электросетях. Соответственно он будет работать только при наличии рабочего заземления электропроводки. В противном случае установка модульного ОПН будет бесполезна, так как в случае возникновения перенапряжения в сети опасный импульс не будет ограничен.

То есть для реализации защиты домашней электропроводки от грозовых перенапряжений при помощи модульного ограничителя перенапряжений обязательным условием должно быть наличие работоспособного заземления, предусмотренного конфигурацией электрической сети или же индивидуального заземляющего контура.

Реле напряжения

Реле напряжения

Что касается реле напряжения, а также устройств, имеющих соответствующую функцию (стабилизатор, источник бесперебойного питания и др.), то следует учитывать, что данные устройства могут работать в заданных пределах рабочего напряжения, их изоляция не способна выдерживать высокие напряжения.

Поэтому в случае попадания молнии грозовой импульс повредит реле напряжения и другие устройства, имеющие соответствующую функцию, не только выйдут из строя, но также повредятся другие электроприборы, включенные в сеть, так как опасный импульс пойдет дальше по электропроводке и включенным в сеть бытовым электроприборам.

То есть реле напряжения не может выполнять функцию защиты от грозовых импульсов. Но все же данное защитное устройство должно быть установлено в домашнем распределительном щитке.

Реле напряжения осуществляет отключение электропроводки в случае выхода напряжения за границы допустимых пределов, так как чрезмерное снижение или увеличение напряжения бытовой электрической сети может привести к выходу из строя бытовых электроприборов.

Сетевые фильтры

Сетевой фильтр

Большинство сетевых фильтров имеют встроенный варистор, то есть данные устройства осуществляют защиту включенных электроприборов от скачков напряжения. Многие люди приобретают сетевой фильтр и считают, что включенная в него техника будет защищена от возможных перепадов напряжения. Но при этом в большинстве случаев не учитывается тот факт, что варистор сетевого фильтра, как и в ограничителе напряжения, ограничивает опасный импульс перенапряжения только при наличии рабочего заземления электропроводки.

В сетевом фильтре варистор соединяет фазный или нулевой проводник электропроводки с защитным заземляющим проводником и в случае возникновения перенапряжения опасный импульс уходит в заземляющий контур по заземляющему проводнику, тем самым защищая электроприборы от повреждения. Поэтому включение сетевого фильтра в сеть, не имеющую рабочего заземления, сводит на нет защитную функцию – бытовые электроприборы не будут иметь защиты и в случае возникновения грозового импульса выйдут из строя.

Другие пути попадания грозовых импульсов

Защита домашней электропроводки от попадания грозовых импульсов не позволяет полностью защитить электроприборы от попадания молнии. Не стоит забывать, что молния может ударить не только в провода электрических сетей, но и в кабельные линии другого назначения, которые проложены открытым способом. В данном случае речь идет о сетевом кабеле интернета, телевизионном и телефонном кабеле. Также молния может попасть в установленную вне помещения антенну.

При попадании молнии в кабель или антенну грозовой разряд попадает в устройство, которое к ним подключено. То есть можно сделать вывод, что наличие защиты бытовой электрической сети от грозовых импульсов не исключает попадание опасных импульсов другим путем.

Многие люди при приближении грозы сразу отключают от сети телевизор, компьютер или другую технику, которая имеет внешнюю антенну или подключена к внешним кабельным сетям. После грозы, включив технику в сеть оказывается, что она вышла из строя по причине попадания грозового импульса через внешний кабель или антенну.

Какие меры защиты существуют в данном случае? Чтобы исключить возможное попадание грозового импульса через кабель необходимо его отключить от устройства. Например, отключить сетевой кабель от компьютера или маршрутизатора, либо если идет речь о телевизоре – отключить антенный кабель или кабель кабельного телевидения.

Существуют также специализированные грозозащитные устройства для защиты сетевых кабелей и устройств от разрядов молнии. Но данные устройства достаточно дорогие и соответственно в быту не используются. Более того, они могут оказаться вовсе неэффективными и не обеспечить защиту в случае необходимости.

Защита от импульсных перенапряжений

В заключении следует отметить, что попадание разряда молнии в бытовые электроприборы, электропроводку очень опасно для людей, находящихся в данный момент в непосредственной близости к данным электроприборам, элементам электропроводки. Если бытовой электроприбор, поврежденный разрядом молнии, можно отремонтировать либо приобрести новый, то для человека это может закончиться плачевно.

Также не исключено возгорание техники или электропроводки в результате попадания грозового импульса. Следовательно, нельзя пренебрегать защитой домашней электропроводки от грозовых перенапряжений, а также стараться по возможности отключать сетевые кабели и внешние антенны в случае приближения грозы.

Как правильно сделать громоотвод 🔌 и молниезащиту в частном доме и на даче своими руками

«От сумы да от тюрьмы» не застрахован никто, а от удара молнии – тем более. После ослепительной вспышки и оглушительного грохота самое приятное — отделаться легким испугом и восторгом от пережитых впечатлений. Нехорошо, если сгорит электроника в доме. Еще хуже, когда случится пожар. Совсем недопустимо – поражение человека ударом молнии. Вывод простой: делаем молниеотвод!

Удар молнии в дом

Удар молнии в дом нельзя назвать красивым

Откуда берется молния?

Всему причиной веселые облачка, которые при приближении грозы постепенно нарастают и превращаются в темные громады кучевого типа. Верхние слои влаги в воздухе превращаются в мелкие кристаллики льда, а нижние остаются в виде капель воды. Так и получились две пластины гигантского конденсатора.

Громадные структуры движутся в воздухе и заряжаются в результате трения: верхние слои накапливают положительные ионы, нижние – отрицательные электроны. Всему есть предел, и накопленный потенциал превращается в электрический разряд. В итоге, «пробивает» там, где наименьшее сопротивление: высокие деревья, крыши домов и … громоотводы!

Как устроена защита от молнии

Из вышеизложенного следует стратегия устройства молниезащиты: направить вероятный электрический разряд по безопасному для нас пути и застраховаться, таким образом, от неприятностей. С этой целью на достаточной высоте устанавливается молниеприемник, который предназначен для захвата грозового разряда.

Устройство молниезащиты

Схема устройства молниеотвода

Далее электрический ток величиной порядка 100000А проходит по токоотводу к заземлителю. Последний обеспечивает связь защитной системы с грунтом. Таким образом, удар молнии минует защищаемые объекты и поглощается землей.

Данная система защиты повсеместно распространена и носит название пассивной. Существует активные молниеотводы, которые имеют ионизатор, провоцирующий удар молнии. Это увеличивает вероятность защиты объекта от поражения. Стоит такого вида молниеотвод немало, и его монтаж сложно сделать своими руками.

Варианты молниеприемника для частного дома

Можно назвать три основных вида молниеприемника по типу конструкции:

  • стержневой молниеприемник;
  • в виде сетки;
  • тросовой молниеприемник;
  • покрытие крыши в качестве молниемника.

Молниеприемник в виде стержня наиболее известен и распространен. Существуют промышленные изделия с готовым крепежом. Любителям творить своими руками реально изготовить изящную конструкцию, украшающую здание. В любом случае штырь из стали должен иметь сечение не менее 70мм2, а для изделия из меди достаточно 35мм2. Таким образом, его диаметр может составлять 7-10мм.

Длина стержня может варьироваться в пределах 0,5-2м, при этом он должен выступать хотя бы на полметра над всеми объектами в окружении здания. Стержневой молниеприемник принимает заряд в одной точке и особенно эффективен при защите небольших строений.

Молниеприемник в виде сетки

Молниеприемник в виде сетки удобен для большой крыши

Молниеприемник в виде сетки изготавливается из проволоки диаметром порядка 6мм. На фото можно оценить, как выглядит на практике конструкция подобного рода. Существуют уже готовые конструкции с размером ячейки 3-12м. Защита от молнии такого рода удобна в применении на крыше большой площади. Для предотвращения возгорания обрешетки молниеприемник монтируют на расстоянии 0,15м от поверхности кровли.

Молниеприемник в виде троса

Тросовый молниеприемник удобно разместить на коньке

В условиях частного дома более удобен в применении молниеприемник в виде троса. Его монтируют на коньке кровли, закрепив за две опоры на противоположных фронтонах. Возможен и комбинированный вариант, когда на упомянутых опорах дополнительно к тросу установлены штыревые молниеприемники.

Трос должен иметь диаметр более 5мм и монтироваться на безопасной высоте от кровли. Конструкция такого типа обычно применяется на крыше с неметаллическим покрытием.

Кровля как молниеприемник

Фальцевая кровля в качестве молниеприемника

Металлическая кровля крыши, при определенных условиях, может также выступать в качестве молниеприемника. При этом толщина металлочерепицы, профнастила или оцинкованного листа должны быть не менее 0,4мм. Заманчиво выполнить защиту от грозы, не применяя дополнительных материалов.

Как работает токоотвод

В идеале, для конструкции, изготовленной своими руками, материал молниеприемника, токоотвода и заземлителя должен быть один и соединен с помощью сварки, то есть — сталь. Такое решение обеспечивает надежность и долговечность защиты. На практике возможно использование оцинкованных и омедненных элементов, а также различных материалов. Их соединение обеспечивают применением зажимов с болтами и гайками.

Токоотвод

Токоотвод на крыше, на стене и цоколе дома

Токоотвод из стали в виде прута или полосы должен иметь сечение не менее 50мм2, проводник из алюминии допускает размер 25мм2, а медный провод можно применять с площадью сечения 16мм2, что примерно соответствует диаметру 8,6 и 5мм соответственно.

Требования к заземлителю

Заземлитель представляет из себя несколько металлических стержней, забитых в грунт и соединенных между собой горизонтальной полосой при помощи сварки. Полоса выводится на поверхность земли и приваривается к токоотводу.

Контур заземления

Так выглядит готовый к проверке контур заземления

Заметим, что не рекомендуется использовать защитный контур заземления для подключения молниеотвода. В случае применения общего заземлителя при грозовом разряде на поверхностях бытовых приборов может возникнуть опасное напряжение. Для защиты электропроводки и бытовой техники в частном доме от удара молнии на вводном щите устанавливаются устройства защиты от импульсных помех (УЗИП).

Заземление для молниеотвода размещают не ближе 5м от крыльца и дорожек и заглубляют горизонтальный соединитель не менее 0,8м. Это необходимо для уменьшения вероятности поражения людей в случае грозового разряда.

Защитная зона громоотвода

Не следует питать иллюзии, что громоотвод на соседнем доме или расположенная недалеко металлическая вышка полностью обезопасят Ваше жилище от удара молнии. Защитная зона громоотвода имеет вполне конкретные границы. В любом случае на даче придется устроить собственную молниезащиту.

Зона безопасности

Размер защищаемой зоны определяется высотой размещения молниеприемника

Конус безопасности, создаваемый стержневым молниеприемником, имеет угол 45-50°. Указанное правило действует при высоте размещения молниезащиты до 15м. Вышеприведенный эскиз демонстрирует, что при угле 45° радиус защитной зоны равен высоте верхней точки стержня над уровнем земли. При значении 50° зона защиты будет чуть больше.

В случае большого участка может возникнуть необходимость установки еще одного громоотвода. Его можно смонтировать на специальной мачте.

Монтируем молниезащиту своими руками

В первую очередь, необходимо выбрать молниеприемник в соответствии с вышеизложенными рекомендациями и имеющимися под рукой материалами. На крыше дачного дома проще всего монтировать обыкновенный стальной штырь. Оцинкованная труба или алюминиевый стержень будут работать еще лучше. При использовании патрубка его верхний конец следует заглушить.

При наличии куска троса нужной длины и диаметра не составит труда протянуть его вдоль конька. На крыше большой площади эффективнее использовать вариант в виде сетки. Молниеприемник любой конструкции следует закрепить так, чтобы его не нарушило ветром.

Если не иметь в виду сварку, токоотвод проще выполнить из толстого медного провода в соответствии с рекомендациями выше. Надежное соединение с молниеприемником можно обеспечить с помощью оцинкованных зажимов с болтами и гайками. Практично закрепить проводник к опорам водосточных труб.

Эскиз заземлителя

Размеры контура заземления в виде треугольника

Заземляющий контур лучше всего обустроить там, где вероятность нахождения людей наименьшая. Также выгодно разместить его в месте, где всегда присутствует влага. Это улучшит контакт заземлителя с землей. Не будет лишним, если рядом с ним установить предупреждающий знак. Болтовое соединение с заземлителем лучше выполнить над землей на цоколе здания, а контакт в земле обеспечить сваркой.

После монтажа всей системы электрическое соединение от молниеприемника до заземления можно проконтролировать мультиметром. Сопротивление заземляющего контура можно проверить только специальным прибором. Его величина должна быть не более 10Ом в том случае, если неподалеку возможно присутствие людей. Для отдельного молниеприемника, установленного вдалеке от дома, сопротивление заземления не должно превышать 50Ом.

Прибор проверки заземления

Стандартный прибор для измерения сопротивления заземления

Хотя бы раз в год имеет смысл проверить целостность всей системы визуально. Раз в несколько лет следует откопать заземление и оценить степень коррозии металла. Если стержни в земле стали заметно тоньше, их необходимо заменить.

Высокое дерево нам поможет

Чтобы обустроить громоотвод на даче, можно использовать в качестве мачты высокое дерево, растущее неподалеку. Молниеприемник следует закрепить на его макушке так, чтобы он выступал не менее 0,5м над кроной. При этом не следует забывать, что дерево растет и меняет свои размеры.

Молниеотвод на дереве

Пирамидальный тополь защитит дом от грозы

Это означает, что молниеприемник и токоотвод следует крепить пластиковыми хомутами, которые не испортят ствол. Провод лучше использовать медный многожильный гибкий и проложить его следует с запасом дины. Кроме того, раз в несколько лет придется забираться наверх и переставлять молниеприемник выше макушки.

Читайте также  Какой краской покрасить холодильник в домашних условиях?

Мы постарались доступно и лаконично изложить все тонкости создания защиты от природной стихии. Пусть у вас получится изящный и надежный молниеотвод! Надеемся, нижеследующий видеоролик будет Вам полезен.

Защита от молний в частном доме

Громоотвод

Защита от молний в частном доме очень важный пункт в электрической цепи дома. Если в многоквартирном доме этим занимается организация, обслуживающая электрическую сеть, то в частном жилище придется взять ситуацию в свои руки. Молния — природный разряд электричества. Сила молнии такова, что на краткие наносекунды своего существования она сравнивается с энергией ядерной электростанции.

Понятно, что при прямом попадании в электрическую сеть дома провода и приборы не то что перегорят, а просто взорвутся. Именно поэтому к такой защите следует отнестись со всей серьезностью и не скупиться на расходы по установке. Молниезащита бывает внутренней и внешней. Это как бы 2 охранных контура, которые, работая совместно, могут почти на 100 % обезопасить электрооборудование и людей в доме.

Внешняя защита от молний

В первую очередь это молниеотвод, который устанавливается на самой высокой точке дома, соединенный проводником с системой заземления. Еще до недавнего времени громоотвод соединялся к заземлителем, который одновременно служил и системой заземления в доме. Как выяснилось опытным путем, такой защиты недостаточно для того, чтобы спокойно чувствовать себя в грозу. Чтобы не пугать никого описанием, что бывает в случае, когда молния пробивает заземление (200 тыс. А!), необходимо показать устройство и схему нормально функционирующего молниеотвода.

Молниеприемник, который устанавливается на крыше, бывает 2 видов. Это либо высокий металлический штырь, который вертикально выставляется при помощи деревянных стоек, либо трос, протянутый вдоль всего конька крыши и уложенный на деревянные подпорки.

Есть еще вариант, когда на крышу укладывают металлическую сетку, сваренную из арматур сечением 8–10 мм², с шагом ячеек 2–5 м. В принципе, особенной разницы между ними нет.

Молниеприемник в виде троса, протянутого по коньку крыши

Молниеприемник в виде троса, протянутого по коньку крыши

Тросовые молниеприемники охватывают большую площадь крыши и считаются более безопасными, а сеточные не портят внешнего вида дома. Сечение молниеприемника должно быть не меньше 12 мм², хотя лучше всего арматура с запасом — 16 мм². При установке штыря необходимо помнить, что он должен возвышаться над самой высокой точкой кровли не меньше чем на 20–30 см, то же самое относится и к тросовому приемнику.

Молниеотвод в виде штыря

Молниеотвод в виде штыря

Примечание. Зона, которую защищает громоотвод, примерно равна его высоте. Например, при высоте над землей 6 м он защитит от попадания молнии территорию круга с радиусом 6 м.

Провод, по которому энергия молнии пойдет к заземлителю, лучше брать стальной сечением не меньше 10 мм² или медный провод сечением не меньше 6 мм². Это как раз тот случай, когда кашу маслом не испортить: чем толще будет провод, тем безопаснее. Проводник соединяется с приемником сваркой или при помощи болтового соединения, конец провода обжимается наконечником. Кабель опускается по наружной стене дома, к которой он крепится при помощи пластиковых хомутов. Они, в свою очередь, приделываются к стене при помощи дюбельей. Желательно, чтобы это была глухая стена, противоположная входной двери, без окон. Проводник не должен проходить мимо металлических элементов (лестниц, водопроводных и водосточных труб) ближе чем на 30 см.

Сетка из арматуры равномерно защищает всю крышу

Сетка из арматуры равномерно защищает всю крышу

Теперь отдельно о системе заземлителя. Он не должен быть совместным с заземлителем контура заземления дома. Это отдельное устройство, и характеристики его должны быть такими же, как у заземлителя дома. Его также надо углублять в землю на 3 м и приваривать к токоотводу.

Примечание. При современном строительстве для оштукатуривания дома используют металлическую сетку, которая поддерживает раствор на стене, армируя его. Эта сетка — неплохая защита от наведенных токов, которые часто случаются во время грозы, даже когда молния не ударяет поблизости.

Внутренняя защита от молний

Ее обеспечивают специальные устройства, которые добавляются в схему домового щитка и ВУ. Суть их в следующем: даже если молния не попадает в дом, во время грозы частенько случаются скачки напряжения, помехи в телевизоре и радио. Это объясняется тем, что электромагнитное поле при ударе молнии может создавать импульсные токи в проводке и устройствах. Разряд необязательно должен ударить именно в дом — это может произойти на расстоянии нескольких сотен метров и даже километров. Если же молния попадает в дом, то в лучшем случае молниеотвод сбросит напряжение в заземлитель, в худшем — разряд со всей силой ударит по электрической сети.

На схеме показаны подключения ОПН, которые располагаются между входным автоматом и проводником заземления, сеть трехфазная

На схеме показаны подключения ОПН, которые располагаются между входным автоматом и проводником заземления, сеть трехфазная

Даже когда энергия молнии стечет по молниеотводу, ток, возникающий в проводке, может привести к порче чувствительной аппаратуры (компьютеров, холодильников и телевизоров). Лучше и не представлять, что случится при прямом воздействии. Как раз для защиты от таких ситуаций и существуют специальные устройства — ограничители. Внутри ВРУ можно установить ограничители перенапряжения (ОПН). Эти устройства по внешнему виду напоминают обычные автоматы (ВА), только без рычага отключения. Все, что надо знать про ограничители, — что они устанавливаются между фазой и заземлением или нулевым проводом и заземлением.

На схеме показаны подключения ОПН, которые располагаются между входным автоматом и проводником заземления, сеть однофазная

На схеме показаны подключения ОПН, которые располагаются между входным автоматом и проводником заземления, сеть однофазная

Ограничители бывают 3 видов и различаются по чувствительности к току перенапряжения.

1. Класс «В» — такие ограничители ставят на входе в щит. Они предназначены для защиты от сверхвысокого напряжения — прямого удара молнии.

2. Класс «С» — устройства устанавливаются по схеме после ограничителей класса «В» и служат защитой от наведенных токов.

3. Класс «D» устанавливают, когда в доме находится особо чувствительная аппаратура.

Применять следует все 3 вида устройств, поскольку у них разный уровень чувствительности, и ставить по схеме один за другим.

Схема подключения ОПН

Схема подключения ОПН

Примечание. Если в доме не установлены ограничители, то во время грозы желательно отключать бытовую технику.

Схема подключения ОПН при однофазной цепи

Схема подключения ОПН при однофазной цепи

Например, при близком ударе молнии сработает ограничитель «В», а при прямом ударе — «С». Именно поэтому нельзя поставить устройство класса «D» и на этом успокоиться, считая, что дом защищен. Ограничители рассчитаны как на однофазные сети, так и на трехфазные. Ниже приведено несколько схем подключения ограничителей.

Применение ОПН различного класса для защиты аппаратуры, находящейся в доме: 1 — шина уравнивания потенциалов; 2 — хомут уравнивания потенциалов; 3 — полоса заземления; 4 — ограничитель перенапряжения, устанавливается между фазовыми проводниками и проводом РЕ; 5 — ограничитель перенапряжения категории «C», устанавливается в распределительных шкафах на вводе; 6 — ограничитель перенапряжения категории «D», устанавливается непосредственно перед каждым электронным потребителем электроэнергии; 7 — ограничитель перенапряжения категории «B», устанавливается в разрез антенного фидера; 8 — ограничитель перенапряжения категории «D»; 9 — ограничитель перенапряжения категории «B» для защиты телефонных линий; 10 — ограничитель перенапряжения категории «B»

Применение ОПН различного класса для защиты аппаратуры, находящейся в доме

1 — шина уравнивания потенциалов; 2 — хомут уравнивания потенциалов; 3 — полоса заземления; 4 — ограничитель перенапряжения, устанавливается между фазовыми проводниками и проводом РЕ; 5 — ограничитель перенапряжения категории «C», устанавливается в распределительных шкафах на вводе; 6 — ограничитель перенапряжения категории «D», устанавливается непосредственно перед каждым электронным потребителем электроэнергии; 7 — ограничитель перенапряжения категории «B», устанавливается в разрез антенного фидера; 8 — ограничитель перенапряжения категории «D»; 9 — ограничитель перенапряжения категории «B» для защиты телефонных линий; 10 — ограничитель перенапряжения категории «B»

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector